A miniaturized 6 GHz infrastructure for cutting down the cost of RF superconducting research-Master Thesis Rossi Antonio Alessandro

Author: Rossi Antonio Alessandro ; Type of thesis: Master Thesis
Abstract: Since the International Committee for Future Accelerators recommended that the Linear Collider design has to be based on the superconducting technology, the scientific world interest is now focused on further developments of new resonant cavities fabrication techniques and cost reduction.
It is important to pursue research on new materials: the goal will be the achievement of superconducting cavities working better than the Nb ones at 4.2 K.
However the high beta 1.5 GHz resonant structure research, especially in this time of international economic recession, would become prohibitive and onerous both for the material costs, of production and treatments, and the cryogenic expense.
For this reason it is mandatory for the future of superconducting resonant cavities to cut down the costs introducing a new research concept. The idea is to build micro cavities completely equal in shape to the real scale model. The RF characterization of samples is an useful diagnostic tool to accurately investigate local properties of superconducting materials. But, a common limitation of systems used for this, often consists in the difficulty of scaling the measured results to the real resonator. In this work we will proof that 6 GHz resonators can simply become our cavity shaped samples.
We will proof that a mini low cost laboratory could be set up to study our 6 GHz samples in all the aspects of interest. The mentioned mini-lab consists in:
* A reduced size mechanical polishing bench
* A chemical/electrochemical minilab for BCP EP
* A mini oven for thermal treatments
* A miniaturized sputtering system
* An inexpensive cryogenics and quick RF measurements