Energetic Condensation Growth of Nb films for SRF accelerators – Mahadevan Krishnan – TFSRF-2010

Title: Energetic Condensation Growth of Nb films for SRF accelerators
Author: Mahadevan Krishnan
Institution: Alameda Applied Sciences Corporation
Abstract: AASC, Jefferson Lab and NSU conduct research into new SRF thin-film coatings by first characterizing the materials properties such as morphology, grain size, crystalline structure, defects, and impurities, then measuring properties such as Tc and RRR and following this with ‘in-cavity’ RF measurements of the Surface Impedance of the films at cryogenic temperatures. These progressive steps are essential to the eventual design of SRF accelerator structures and to measure Q-slope and other performance parameters at high fields.
This paper describes recent results from pure Nb thin-films grown on a-plane and c-plane sapphire, MgO as well as on amorphous substrates. Substrate preparation is shown to be critical to good electrical properties of the film. The sapphire and MgO substrates were heated up to 700 deg C and subsequently coated at 300, 500 and 700 deg C. Film thickness was varied from ~0.25µm up to >3µm. RRR and Tc were measured. The XRD data yielded pole figures, intensity vs. 2-θ and intensity vs. φ plots. These data were complemented by EBSD and SEM images. RRR values ranging from ~10 up to ~333 have been measured and correlated with the XRD data. Good crystallinity is associated with high RRR. Single crystalline (110) epitaxial layers of Nb films are grown well on a-plane sapphire substrates at different temperatures. Nb films have also been grown on Cu substrates, as well as on MgO and borosilicate substrates. The significance of crystalline structure observed on amorphous substrates is discussed in light of its implications for future, lower-cost SRF cavities.