Author: Lorenzo Cerasti ; Type of thesis: Master thesis
Abstract: Copper is probably the metal that the human race knows from more time, and in recent
years its use is growing exponentially1. It is employed in every industry, from architecture
to sculpture, from electronics to medicine, from food to musical instruments, and so on.
The ultra-pure Copper then, for its characteristics of thermal and electrical conductivity,
and corrosion resistance (all three exceeded only by Gold and Silver), is critical in special
and advanced applications such as particle physics, the superconducting accelerators
and all the components involved in high value-added applications.
For the latter components, the surface finish is not only an aesthetic whim but a
necessary request.
Roughness plays an important role in determining how a real object will interact with its
environment. Rough surfaces usually wear more quickly and have higher friction
coefficients than smooth surfaces. Roughness is often a good predictor of the
performance of a mechanical component, since irregularities in the surface may form
nucleation sites for cracks or corrosion. Although a high roughness value is often
undesirable, it can be difficult and expensive to control in manufacturing. Decreasing the
roughness of a surface will usually increase its manufacturing costs.
his project work focuses on the ultra high cleaning protocol of Copper components for
particle physics, superconducting cavities and technology transfer of this knowledge to
anodes for X-ray tubes.
Author: Eduard Chyhyrynets
Sputtering of Molybdenum thick films for cyclotron targets to produce Technetium-99m – Master Thesis Sara Cisternino
Author: Sara Cisternino ; Type of thesis: Master thesis
Abstract:
99mTc is the principal radioisotope used in medical diagnostics worldwide. Its 6-hour physical half-life and the 140 keV photopeak makes it ideally suited to medical imaging using conventional gamma cameras. 99mTc is derived from its parent element 99Mo that is derived almost exclusively from the fission of uranium-235 targets (using primarily highly-enriched uranium) irradiated in a small number of old-aged research nuclear reactors.
A global shortage of 99Mo exposed vulnerabilities in the supply chain of medical radioisotopes, therefore, individual countries and companies are exploring options for a future supply of medical radioisotopes. Cyclotron-based production of 99mTc starting from 100Mo by 100Mo(p,2n)99mTc reaction has been developed and evaluated at National Institute of Nuclear Physics – Legnaro National Laboratory (LNL-INFN); however some issues must be resolved. Among them innovative target development, because different requirements should be considered:
- target strength;
- ability to achieve desired thickness of target material;
- adherence of target material to baking;
- chemical resistance of backing;
- thermal performance at desired current.
Target design strategies, which have been identified in literature, include evaporation, e-beam melting, rolling of thick/self-supported targets, sintering, and electrodeposition. However, they are not performing good enough from the heat conduction point of view. In fact, the resulting targets have high oxidation level and low density, and the deposition technique does not allow to control the thickness and to deposit onto specific substrates .
The purpose of this thesis is the development of an innovative target based on the deposition of the target material, specifically Mo, by magnetron sputtering technique in order to provide high density, thick, uniform and adherent film onto chemically inert backing, as sapphire.
After the sputtering parameter optimization, thick ( ̴ 100 μm) Mo films have been obtained and neither stress nor delamination have been observed.
Successful irradiations were carried out with 16 MeV cyclotron in Sant’Orsola Hospital, in Bologna, with different current beams. In fact, the system has performed at a current of more than 20 μA.
RF Characterization of Thin Film Sputtered Superconducting Resonators – Master Thesis Giovanni Caldarola
Author: Giovanni Caldarola ; Type of thesis: Master Thesis
Abstract: Long time has passed from the discovery of superconductivity, in 1911. Since then theoretical and experimental progress have been made continually. Nevertheless, there are still much to learn about superconductivity and the uses of superconducting materials. At INFN/LNL research and development is being done in order to understand the properties and uses of various superconducting materials to push forward the field of particle accelerator technology. These are used to fabricate radio-frequency (RF) accelerating cavities in order to minimize the power dissipated and increase their figures of merit, such as accelerating gradient (Eacc) and intrinsic quality factor (Q0 or Q) which is a convenient parameter for the number of oscillations it takes the stored energy to dissipate to zero.
Superconducting properties of high purity niobium makes it the preferred material for many accelerator projects using superconducting technology. In fact, niobium possesses very intriguing physical and mechanical properties, not only the highest superconducting transition temperature (Tc) of 9.26°K and the highest superheating field of 240 mT among all available superconducting pure metals but also excellent ductility, which enables machining to be done relatively easily. In addition, the high quality factor and cavity accelerating gradient are fundamental parameters as they affect the overall cost of the accelerator in a direct way.
The accelerating gradient of the superconducting niobium cavities has been remarkably raised in the past decades with an advance of the cavity fabrication technology.
Cavities used to-date are made of niobium either in bulk or niobium coated on copper and are operated at 1.8 and 4.2 °K where the BCS component of the surface resistance is reduced to minimum and the cavity works in the residual resistivity regime.
In Legnaro three laboratories are reserved for cavity treatments and analysis: the chemical, the sputtering and the cryogenic lab, which is dedicated to the whole process of RF testing.
The work will focus on the influence on cavity performance of external surface conditions (in bulk cavity) and of the interface between niobium and copper (in thin film sputtered cavities). Specifically the interest is aimed to investigate how to better allow heat transfer from the resonator to the helium bath
For this purpose, 6 GHz elliptical cavities have been used. The main advantages over a 1.3 or 1.5 GHz superconducting RF cavities (SRF) are saving time, cost and material. Furthermore, due to smaller dimensions, the processes involved have been characterized by a reduction of energy in thermal treatments and a fast cryogenic measurement. A spinning technology is used to create seamless bulk-Nb and bulk-Cu cavities [1].
As a parallel activity, RF characterization of a 101 MHz Nb-Cu QWR (quarter wave resonator) has been conducted and compared with previous tests, varying sputtering parameters.
During the RF test the cavities have to be cooled at cryogenic temperatures in order to reach the superconducting state. In the testing facility there are two apertures which can host a cryostat and allow that this task is accomplished. While 6 GHz elliptical cavities are tested at 4.2°K and then at 1.8°K, for the 101 MHz QWR a temperature of 4.2°K is sufficient.
An Innovative Cylindrical magnetron sputtering source for the deposition of HIE-ISOLDE superconducting Nb/Cu QWRs – Daniel Adrien Franco Lespinasse PhD Thesis
Author: Daniel Adrien Franco Lespinasse; Type of thesis: PhD Thesis
Abstract: In the framework of Eucard project, it has been carried out, in collaboration with CERN, the R&D on magnetron sputtering deposition on the HIE-ISOLDE cavity geometry, as an alternative method to deposit niobium thin films. In this research a new magnetron configuration source was tested at the National Institute of Nuclear Physics (INFN-LNL), in order to deposit a uniform niobium thin film onto copper superconducting Quarter Wave Resonator cavities. The methodology was divided in three. A first part, in which a test dummy cavity and a test cathode were used in order to deposit stainless steel onto copper quartz. The purpose of the use of steel has been finding the right parameters of sputtering and also to analyze the uniformity of the film. In this first phase it have been tested several magnetic confinements, which allowed the optimization of the deposition. In parallel it was performed the deposition of stainless steel onto copper strips, to realize the stripping test as a method to analyze the uniformity of the film. The second part was focused on the deposition of niobium thin film onto quartz samples placed along the resonator to improve the superconducting properties, specifically Residual Resistivity Ratio (RRR) and Critical Temperature (Tc); nevertheless other magnetic confinements were tested to maintain the uniformity of the coating. It was studied the influence on superconducting properties of two principal parameters of the sputtering process: the power and the substrate temperature. After setting the deposition parameters, a definitive magnetron confinement was used to deposit the real copper QWR. The RF performance was also measured after the design, construction and installation of a test cryostat. Finally, it was found the magnetic source to deposit a niobium thin film uniformly over QWR cavities. Increasing the substrate temperature and the sputtering power, the transition temperature of the niobium thin film was around 9,3K and it was obtained a maximum RRR of 61. Only 30 min were necessary to deposit the film with a uniformity of 2±1 μm along the cavity. SEM results allowed to analyze the microstructure of the niobium film. Bigger grains were founds on the inner conductor closer to the magnetron source. In addition a test cryostat was successfully built in order to measure the RF performance; the system can be useful to perform measurements at 4.2 and 1.8 K. Respect to the RF performance the first Nb/Cu cavity is under the specifications of CERN with a maximum Q value of 2e8 and an accelerating field of 2MV/m; however this first result is extremely important to start with the optimization phase. Some parameters will be changed in order to improve the performance and push the SRF community to use the magnetron sputtering technique as an economical method to deposit superconducting cavities in short times.
Industrial R&D on Innovative Surface Treatments for an Ecological Descaling of “Acciaierie Valbruna” Stainless Steel Wire Rods in Replacement of the Traditional Acid Etching – Vlada Pastushenko PhD Thesis
Author: Vlada Pastushenko; Type of thesis: PhD Thesis
Abstract: This work deals with an industrial research on ecological innovative descaling treatments for stainless steels, in substitution of the acid etching process: from the study and the research on samples, the most efficient techniques and their application to industrial purpose are explained. The research has basically covered the study of two pre-finishing treatments (high pressure water blasting and “dry ice”-blasting) and two etching treatments (electropolishing with ionic liquids and in aqueous media). In the field of stainless steels, the surface oxide of iron Fe (III) is combined with the multiple elements added to alloys in order to increase their characteristics (carbon, chromium, nickel and other). Moreover, the surface oxide is presented as a layer very tenacious and compact. In addition, heat treatment leads to the formation of a layer without chromium more readily attacked by oxygen from the atmosphere. Surface treatments are required to remove the surface oxide and recover the
chromium layer. The chemical pickling, that is one of the most common etching processes, depends on many factors, such as the size of the pieces, the type of plant, the type of alloy et al. In general, the traditional solutions contain from 10% to 20% by weight of nitric acid, and 1% to 5% by weight of hydrofluoric acid. The oxidizing environment is provided by nitric acid, which effectively removes the oxide surface, and is subsequently used without the hydrofluoric acid to restore the passive layer (passivation). From the environmental point of view, however, the use of this reagent is very costly:
• Air pollution: the formation of nitrogen oxides (NOx) during the process causes fumes and vapours. These gases are harmful to health, highly polluting (production of acid rain) and extremely aggressive towards metals.
• Water pollution: the high concentration of nitrates and nitrites is one of the causes of eutrophication. In particular, nitrites may form carcinogenic compounds such as nitrosamines, which can enter the food chain through fish.
• Health and safety: hydrofluoric acid is highly corrosive and a poison. It should be handled with extreme attention, using protective equipment and safety precautions. Once absorbed into the blood through the skin, it reacts with blood calcium and may cause cardiac arrest. In addition, it combines with calcium and magnesium of the bones. Since its action can be delayed for many hours, it can distribute throughout the body, causing the erosion of bones. These features have shown how the study of alternative “green” treatments is crucial.
Development of thin films for superconducting RF cavities in ASTeC – Oleg Malishev – TFSRF-2014
Title: Development of thin films for superconducting RF cavities in ASTeC
Author: Oleg Malishev
Institution:
Continue reading
The problem of heat transfer at Liquid helium temperatures – Enzo Palmieri – TFSRF-2014
Title: The problem of heat transfer at Liquid helium temperatures
Author: Enzo Palmieri
Institution: INFN-LNL
Continue reading
Power Spectral Density Analysis of ECR Deposited Niobium Thin Films – Joshua Spradlin – TFSRF-2014
Title: Power Spectral Density Analysis of ECR Deposited Niobium Thin Films
Author: Joshua Spradlin
Institution: Jlab
Continue reading
Porosity of Nb magnetron sputtered thin films and dependence on sputtering parameters – Hanna Skliarova – TFSRF-2014
Title: Porosity of Nb magnetron sputtered thin films and dependence on sputtering parameters
Author: Hanna Skliarova
Institution: INFN-LNL
Continue reading
Kapitza resistance at Niobium/superfluid He interfaces – Jay Amrit – TFSRF-2014
Title: Kapitza resistance at Niobium/superfluid He interfaces
Author: Jay Amrit
Institution: Université Paris-Sud / LIMSI-CNRS
Continue reading